Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles.
نویسندگان
چکیده
Urine is universally recognized as one of the best non-invasive matrices for biomonitoring exposure to a broad range of xenobiotics, including toxic metals. Detection of metal ions in urine has been problematic due to the protein competition and electrode fouling. For direct, simple, and field-deployable monitoring of urinary Pb, electrochemical sensors employing superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) has been developed. The metal detection involves rapid collection of dispersed metal-bound nanoparticles from a sample solution at a magnetic or electromagnetic electrode, followed by the stripping voltammetry of the metal in acidic medium. The sensors were evaluated as a function of solution pH, the binding affinity of Pb to DMSA-Fe3O4, the ratio of nanoparticles per sample volume, preconcentration time, and Pb concentrations. The effect of binding competitions between the DMSA-Fe3O4 and urine constituents for Pb on the sensor responses was studied. After 90 s of preconcentration in samples containing 25 vol.% of rat urine and 0.1 g L(-1) of DMSA-Fe3O4, the sensor could detect background level of Pb (0.5 ppb) and yielded linear responses from 0 to 50 ppb of Pb, excellent reproducibility (%RSD of 5.3 for seven measurements of 30 ppb Pb), and Pb concentrations comparable to those measured by ICP-MS. The sensor could also simultaneously detect background levels (<1 ppb) of Cd, Pb, Cu, and Ag in river and seawater.
منابع مشابه
Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles.
We have shown that superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) are an effective sorbent material for toxic soft metals such as Hg, Ag, Pb, Cd, and Tl, which effectively bind to the DMSA ligands and for As, which binds to the iron oxide lattices. The nanoparticles are highly dispersible and stable in solutions, have a larg...
متن کاملSimple and Rapid Immobilization of Firefly Luciferase on Functionalized Magnetic Nanoparticles; a Try to Improve Kinetic Properties and Stability
We expressed and purified a recombinant P. pyralis luciferase with N-terminal His-tags. The silanized Ni or Cu-loaded magnetic particles were prepared and used to assemble the His-tagged P. pyralis luciferase. This enzyme immobilized on functionalized magnetic nanoparticles (MNPs) via electrostatic interactions of His-tag with Ni2+/Cu2+ ions on the surface of MNPs using si...
متن کاملBienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors.
The preparation, characterization and application of a three-layer magnetic nanoparticle composed of an Fe(3)O(4) magnetic core, a Prussian Blue (PB) interlayer and a gold shell (it can be abbreviated as Au-PB-Fe(3)O(4)) for an ultrasensitive and reproducible electrochemical immunosensing fabrication were described for the first time in this work. With the employment of the Au-PB-Fe(3)O(4) nano...
متن کاملHeavy Metals (Cd, Cu, Ni, Zn and Pb) Uptake by Various Components of Smooth-Leaved Elm (Ulmus carpinifolia) Tree in Abadeh City
The concentrations of cadmium, copper, nickel, zinc and lead were investigated in various components of smooth-leaved elm (Ulmus carpinifolia) tree in three sites (polluted, moderately polluted, and control) in Abadeh, Iran, in July 2015. The experiment was conducted using factorial experiment in a Completely Randomized Design with three replications. The concentration of heavy metals was measu...
متن کاملDistributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag) in the southeastern Atlantic and the Southern Ocean
Comprehensive synoptic datasets (surface water down to 4000 m) of dissolved cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb) and silver (Ag) are presented along a section between 34 S and 57 S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu and Ag display nutrient-like profiles similar to silicic acid, and of Cd simil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 133 3 شماره
صفحات -
تاریخ انتشار 2008